Some Applications On Inclusion Relations for Uniformly Starlike and Convex Functions

Fatma A. Alusta and Milad E. Drbuk

Department-Mathematics Faculty of Arts and Science - Mesllata, Elmergib University

ABSTRACT

In this paper, we have established the inclusion relations for k-uniformly starlike functions under the multiplier transformation I_n^{λ} operator. These results are also extended to k- uniformly convex functions,

Keywords:

Holomorphic Functions, g- uniformly, g- uniformly convex, close-to-convex functions, g- uniformly quasi-convex functions.

1. Introduction.

Put ∇ in the form:

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \tag{1}$$

And $D = \{z \in C; |z| < 1\}.$

If f and g are holomorphic in D , we called ${}^{\circ}F$ is subordinate to ∂ , written ${}^{\circ}F \prec \partial$ or ${}^{\circ}F(z) < \partial(z)$

if there a Schwartz function \propto in D such that ${}^{\circ}F(z) = \partial(\propto(z))$.

For any $0 \le \gamma < 1$, $k \ge 0$, we define

 $UST~(k,\gamma), UCV~(k,\gamma), UCC~(k,\gamma,\beta)$ and $UQC~(k,\gamma,\beta)$ the g-uniformly subclasses as follows:

$$UST(k,\gamma) = \left\{ f \in \nabla : \Re\left(\frac{zf^{'}(z)}{f(z)} - \gamma\right) > k \left| \frac{zf^{'}(z)}{f(z)} - 1 \right| \right\}$$
(2)
$$UCV(k,\gamma) = \left\{ f \in \nabla : \Re\left(1 + \frac{zf^{''}(z)}{f^{'}(z)} - \gamma\right) > k \left| \frac{zf^{''}(z)}{f^{'}(z)} \right| \right\}$$
(3)
$$UCC(k,\gamma,\beta) = \left\{ f \in \nabla : \exists g \in UST(k,\gamma), \Re\left(\frac{zf^{'}(z)}{g(z)} - \gamma\right) \geq k \left| \frac{zf^{'}(z)}{g(z)} - 1 \right| \right\}$$
(4)
$$UQC(k,\gamma,\beta) = \left\{ f \in \nabla : \exists g \in UCV(k,\gamma), \Re\left(\frac{(zf^{'}(z))^{'}}{g^{'}(z)} - \gamma\right) \geq k \left| \frac{zf^{'}(z)}{g^{'}(z)} - 1 \right| \right\}$$
(5).

For more details see [1].

Setting

$$\Omega_{k,\gamma} = \left\{u + iv, u > k\sqrt{(u-1)^2 + v^2} + \gamma\right\} \tag{6}$$
 where $\vartheta(z) = \frac{zf^{'}(z)}{f(z)}$ or $\vartheta(z) = 1 + \frac{zf^{''}(z)}{f^{'}(z)}$ and considering the functions which maps D on to the conic domain $\Omega_{k,\gamma}$, such that $1 \in \Omega_{k,\gamma}$, we may rewrite the conditions (2) or (3) in the form $p(z) < q_{k,\gamma}$. We introduce the function $q_{k,\gamma}$ as the following:

We note that $I_n^{\lambda}\left(I_m^{\lambda}f(z)\right)=I_{n+m}^{\lambda}f(z)$ for all integers m and n. The operators I_n^{λ} are closely related to the Komatu integral operators [8] and the differential and integral operators defined by Salagean[2]. We also note that $I_0^0 f(z) = z f'(z)$ and $I_0^1 f(z) = f(z)$ the operator defined by Cho and Kim[5].

Next, using the operator I_n^{λ} , we introduce the following k-uniformaly class of functions for $0 \le \gamma < 1$, $k \ge 0$ and $0 \le \lambda$:

$$UST(\lambda, k, \gamma) = \{ f \in A : I_n^{\lambda} f(z) \in UST(k, \gamma); z \in D \}$$
(11)

$$UCV(\lambda, k, \gamma) = \left\{ f \in A : I_n^{\lambda} f(z) \in UCV(k, \gamma); z \in D \right\}$$
 (12)

$$UCC(\lambda, k, \gamma, \beta) = \left\{ f \in A : I_n^{\lambda} f(z) \in UCC(k, \gamma, \beta); z \in D \right\}$$
 (13)

$$UQC(\lambda, k, \gamma, \beta) = \{ f \in A : \} I_n^{\lambda} f(z) \in UQC(k, \gamma, \beta); z \in D$$
 (14).

We also note that

$$f \in UST (\lambda, k, \gamma) \leftrightarrow zf' \in UCV (\lambda, k, \gamma),$$

$$f \in UCC (\lambda, k, \gamma, \beta) \leftrightarrow zf' \in UQC (\lambda, k, \gamma, \beta).$$
(15)

$$f \in UCC(\lambda, k, \gamma, \beta) \leftrightarrow zf' \in UQC(\lambda, k, \gamma, \beta).$$
 (16)

1. Inclusion properties

In the study we shall to prove some theorems involving operator I_{n+1}^{λ} . to prove main theorems, we shall need the following lemmas.

"Lemma 1[6]: Let β and γ is complex, h is univalent convex in the open disk D, where h(0) = c and $\Re(\beta h(z) + \gamma) > 0$. Let $g(z) = c + \sum_{n=1}^{\infty} b_n z^n$ be holomorphic in D. Then

$$g(z) + \frac{zg'(z)}{\beta g(z) + \gamma} < h(z) \rightarrow g(z) < h(z).$$
"

"Lemma 2[7]: Let h is convex in the open disk D and let $A \ge 0$. set B(z) is holomorphic in D with $\Re(B(z)) \ge A$. If g is holomorphic in D and g(0) = h(0). Then

$$Az^2g^{''(z)} + B(z)zg^{'(z)} + g(z) < h(z) \rightarrow g(z) < h(z)$$
."

Theorem 1. Let $f(z) \in \nabla$. If $I_n^{\lambda} f(z) \in UST(k, \gamma)$, then $I_{n+1}^{\lambda} f(z) \in UST(k, \gamma)$. **Proof.** Let $I_n^{\lambda} f(z) \in UST(k, \gamma)$ and set

$$\vartheta(z) = \frac{z\left(l_{n+1}^{\lambda}f(z)\right)'}{l_{n+1}^{\lambda}f(z)}.$$
(17)

Using (10) and (17), we ha

$$\frac{I_n^{\lambda} f(z)}{I_{n+1}^{\lambda} f(z)} = \frac{\vartheta(z) + \lambda}{\lambda + 1}.$$
Differentiating the last equation yields

$$\frac{z(l_{n+1}^{\lambda}f(z))}{l_{n+1}^{\lambda}f(z)} = \vartheta(z) + \frac{z\vartheta'(z)}{\vartheta(z)+\lambda} , \qquad (19)$$

from (8) we have

$$\vartheta(z) + \frac{z\vartheta'(z)}{\vartheta(z) + \lambda} < q_{k,\gamma}(z).$$

By using (1) to (19) and Lemma 1, we get $\vartheta(z) \prec q_{k,\nu}(z)$, hence

$$I_{n+1}^{\lambda}f(z)\in UST(k,\gamma).$$

Theorem 2. Let $f(z) \in \nabla$. If $I_n^{\lambda} f(z) \in UCV(k, \gamma)$, then $I_{n+1}^{\lambda} f(z) \in UCV(k, \gamma)$.

$$I_{n}^{\lambda}f(z) \in UST(k,\gamma) \leftrightarrow z\left(I_{n}^{\lambda}f(z)\right)^{'} \in UST(k,\gamma)$$

$$\leftrightarrow I_{n}^{\lambda}zf^{'}(z) \in UST(k,\gamma)$$

$$\to I_{n+1}^{\lambda}zf^{'}(z) \in UST(k,\gamma)$$

$$\leftrightarrow I_{n+1}^{\lambda}f(z) \in UCV(k,\gamma).$$

and the proof of Theorem 2 is completed.

Theorem 3. Let $f(z) \in \nabla$. If $I_n^{\lambda} f(z) \in UCC(k, \gamma, \beta)$, then $I_{n+1}^{\lambda} f(z) \in UCC(k, \gamma, \beta)$. $I_n^{\lambda} f(z) \in UCC(k, \gamma, \beta)$ by definition we can write **Proof.** Since

$$\frac{z\left(I_n^{\lambda}f(z)\right)}{k(z)} \prec q_{k,\gamma}(z)$$

for some $k(z) \in UST(k, \gamma)$. For g(z) such that $I_n^{\lambda}g(z) = k(z)$ we have

$$\frac{z\left(I_{n}^{\lambda}f(z)\right)'}{I_{n}^{\lambda}g(z)} < q_{k,\gamma}(z).$$

$$h(z) = \frac{z\left(I_{n+1}^{\lambda}f(z)\right)'}{I_{n+1}^{\lambda}g(z)}$$
(20)

Let

and

$$H(z) = \frac{z(I_{n+1}^{\lambda}g(z))}{I_{n+1}^{\lambda}g(z)}$$

where h(z) and H(z) are analytic in U and h(0) = (0) = 1.

Now, by Theorem 1

$$I_{n+1}^{\lambda}g(z) \in UST(k,\gamma) \text{ and } \Re(H(z)) > \frac{k+\gamma}{k+1}.$$

Also, we note that

$$z\left(I_{n+1}^{\lambda}f(z)\right)' = \left(I_{n+1}^{\lambda}g(z)\right)h(z). \tag{21}$$

Differentiating both sides of (21) we have

$$\frac{z(I_{n+1}^{\lambda}(zf'(z)))'}{I_{n+1}^{\lambda}g(z)} = \frac{z(I_{n+1}^{\lambda}g(z))'}{I_{n+1}^{\lambda}g(z)} \cdot h(z) + zh'(z)$$
$$= H(z)h(z) + zh'(z).$$

Now using the identity (10), we obtain

$$\frac{z\left(I_n^{\lambda}f(z)\right)}{I_n^{\lambda}g(z)} = \frac{I_n^{\lambda}(zf'(z))}{I_n^{\lambda}g(z)} = \frac{z(I_{n+1}^{\lambda}(zf'(z)))' + \lambda I_{n+1}^{\lambda}(zf'(z))}{z\left(I_{n+1}^{\lambda}g(z)\right)' + \lambda I_{n+1}^{\lambda}g(z)}$$

$$= \frac{\frac{z(I_{n+1}^{\lambda}(zf'(z)))'}{I_{n+1}^{\lambda}g(z)} + \frac{\lambda I_{n+1}^{\lambda}(zf'(z))}{I_{n+1}^{\lambda}g(z)}}{\frac{z(I_{n+1}^{\lambda}g(z))'}{I_{n+1}^{\lambda}g(z)} + \lambda}$$

$$= \frac{H(z)h(z) + zh'(z) + h(z)}{H(z) + \lambda}$$

$$= h(z) + \frac{zh'(z)}{H(z) + \lambda}$$
(22)

from (20),(21) and (22), we conclude the

$$h(z) + \frac{zh'(z)}{H(z) + \lambda} < q_{k,\gamma}(z).$$

Let A = 0 and $B(z) = \frac{1}{H(z) + \lambda}$ we have

$$\Re(B(z)) = \frac{1}{|H(z) + \lambda|^2} \Re(\lambda + H(z)) > 0.$$

This inequality satisfies conditions in Lemma 2. Since $h(z) < q_{k,y}(z)$, completed the proof.

Theorem 4. put $f(z) \in \nabla$. If $I_n^{\lambda} f(z) \in UQC(k, \gamma, \beta)$, then $I_{n+1}^{\lambda} f(z) \in UQC(k, \gamma, \beta)$. **Proof.** The proof of Theorem 4 similar that Theorem 3.

3. the closure properties of the operator F_c .

Now, we consider $F_c(z)$ [4],[3], which defined by

$$F_c(f) = \frac{c+1}{z^c} \int_0^z t^{c-1} f(t) dt, \qquad (c \ge 0).$$
 (23)

Theorem 5. Set $c > \frac{-(k+\gamma)}{k+1}$.

If $I_n^{\lambda} f(z) \in UST(k, \gamma)$, then $I_n^{\lambda} F_C(f)(z) \in UST(k, \gamma)$. **Proof.** Let $f(z) \in UST(k, \gamma)$ and set

$$\vartheta(z) = \frac{z \left(I_n^{\lambda} F_c(f)(z) \right)'}{I_n^{\lambda} F_c(f)(z)}$$

where, p(z) analytic in D. From (23), we get

$$z\left(I_n^{\lambda}F_c(f)(z)\right) = (c+1)I_n^{\lambda}f(z) - cI_n^{\lambda}F_c(f)(z). \tag{24}$$

Then, by using (24) and we obtain

$$\vartheta(z) + c = (c+1)\frac{I_n^{\lambda} f(z)}{I_n^{\lambda} F_c(f)(z)}.$$
 (25)

By differentiation equatin (25) we, have

$$\frac{z\left(I_n^{\lambda}f(z)\right)}{I_n^{\lambda}f(z)} = \vartheta(z) + \frac{z\vartheta'(z)}{\vartheta(z) + c} < q_{k,\gamma}(z). \tag{26}$$

Hence, by virtue of Lemma 1, we conclude that $\vartheta(z) < q_{k,\nu}(z)$, which implies that $I_n^{\lambda} F_{\mathcal{C}}(f)(z) \in UST(k, \gamma).$

Theorem 6. Suppose $c > \frac{-(k+\gamma)}{k+1}$.

If $I_n^{\lambda} f(z) \in UCV(k, \gamma)$, then $I_n^{\lambda} F_{\mathcal{C}}(f)(z) \in UCV(k, \gamma)$.

Proof. By applying (15) and Theorem 5, it follows that

$$f(z) \in UST(k,\gamma)$$
 $\leftrightarrow zf'(z) \in UST(k,\gamma)$
 $\rightarrow F_c(zf'(z)) \in UST(k,\gamma)$ by Theorem 5
 $\leftrightarrow z(F_c(f)(z))' \in UST(k,\gamma)$
 $\leftrightarrow F_c(f)(z) \in UCV(k,\gamma)$

which proves Theorem 6.

Theorem 7. Suppose $c > \frac{-(k+\gamma)}{k+1}$.

If $I_n^{\lambda} f(z) \in UCC(k, \gamma, \beta)$, then $I_n^{\lambda} F_{\mathcal{C}}(f)(z) \in UCC(k, \gamma, \beta)$.

Proof. Let $f(z) \in UCC(k, \gamma, \beta)$. Then by the definition of the class $UCC(k, \gamma, \beta)$ there exists a function $g(z) \in UST(k, \gamma)$ such that

$$\frac{z\left(I_n^{\lambda}f(z)\right)'}{I_n^{\lambda}a(z)} < q_{k,\gamma} (z).$$

Thus we set

$$h(z) = \frac{z \left(I_n^{\lambda} F_c(f)(z) \right)'}{I_n^{\lambda} F_c(f)(z)}$$
 (27)

where h(z) analytic in D. Since $g(z) \in UST(k, \gamma)$ we see from Theorem 5 that $F_c(g)(z) \in UST(k, \gamma)$. Let

$$H(z) = \frac{z \left(I_n^{\lambda} F_c(g)(z) \right)'}{I_n^{\lambda} F_c(g)(z)}$$
 (28)

where H(z) holomorphic in D where, $\Re(H(z)) > \frac{k+\gamma}{k+1}$, from (27) we conclude

$$z\left(I_n^{\lambda}F_c(f)(z)\right)' = h(z)\left(I_n^{\lambda}F_c(g)(z)\right). \tag{29}$$

Differentiating both sides of (29) we obtain

$$\frac{z(I_n^{\lambda}(zF_c'(f)(z)))'}{I_n^{\lambda}F_c(g)(z)} = \frac{z(I_n^{\lambda}F_c(g)(z))'}{I_n^{\lambda}F_c(g)(z)} \cdot h(z) + zh'(z)
= H(z)h(z) + zh'(z).$$
(30)

by using (24) and (30), we get

$$\frac{z\left(I_{n}^{\lambda}f(z)\right)'}{I_{n}^{\lambda}g(z)} = \frac{z(I_{n}^{\lambda}zF_{c}'(f)(z))' + cz(I_{n}^{\lambda}F_{c}(f)(z))'}{z\left(I_{n}^{\lambda}F_{c}(g)(z)\right)' + cI_{n}^{\lambda}F_{c}(g)(z)}$$

$$= \frac{\frac{z(I_{n}^{\lambda}zF_{c}'(f)(z)))'}{I_{n}^{\lambda}F_{c}(g)(z)} + c\frac{z(I_{n}^{\lambda}F_{c}(f)(z))'}{I_{n}^{\lambda}F_{c}(g)(z)}$$

$$= \frac{\frac{z(I_{n}^{\lambda}zF_{c}'(f)(z)))'}{I_{n}^{\lambda}F_{c}(g)(z)} + c$$

$$= \frac{\frac{z(I_{n}^{\lambda}zF_{c}'(f)(z))'}{I_{n}^{\lambda}F_{c}(g)(z)} + c$$

$$= \frac{z(I_{n}^{\lambda}zF_{c}'(f)(z))'}{I_{n}^{\lambda}F_{c}(g)(z)} + c$$

$$= \frac{z(I_{n}^{\lambda}zF_{c}'(f)(g)(z)}{I_{n}^{\lambda}F_{c}(g)(z)} + c$$

$$= \frac{z(I_{n}^{\lambda}zF_{c}'(f)(g)(z)}{$$

Letting $B(z) = \frac{1}{H(z) + \lambda}$ in (31), we get $\Re(B(z)) > 0$ if $c > \frac{-(k+\gamma)}{k+1}$.

Hence, applying Lemma 2 for A and B as described we can show that $h(z) < q_{k,\gamma}(z)$, so that $I_n^{\lambda} F_{\mathcal{C}}(f)(z) \in UCC(k,\gamma,\beta)$.

Theorem 8. Put $c > \frac{-(k+\gamma)}{k+1}$.

If $I_n^{\lambda} f(z) \in UQC(k, \gamma, \beta)$, then $I_n^{\lambda} F_C(f)(z) \in UQC(k, \gamma, \beta)$.

Proof. The proof of Theorem 8, we can get it by using Theorem 7.

1. References.

- [1] A.W.Goodman, On uniformly starlike functions, J.Math. Anal. Appl.,155(1991),364-370.
- [2] G. S. Salagean, Subclasses of univalent functions, Lecture Notes in Math. 1013, Springer, Berlin, 1983, pp. 362–372.
- [3] H. A. Al-Kharsani, Multiplier transformations and k-uniformly p-valent starlike functions, General Math., 17 (2009), no. 1, 13–22.
- [4]I. B. Jung, Y. C. Kim and H. M. Srivastava, The hardy space of analytic functions associated with certain one-parameter families of integral operators, J. Math. Anal. Appl. 176 (1993), 138-147.
- [5] N.E.Cho and T.H.Kim, Multiplier transformation and strongly close-toconvex functions, Bull.korean Math. Soc., 40 (2003), 399-410.
- [6] P.Eeinigenburg, S.S.Miller, P.T.Mocanu and M.D.Reade, General Inequalities, 64 (1983), (Birkhauseverlag-Basel) ISNM,339-348.
- [7] S.S.Miller and P.T. Mocanu, Differential subordination and inequalities in the compelex plane, J.differential equations, 67(1978), 199-211.
- [8] Y.Komatu, Distortion theorems in relation to linner integral operators, Kluwer Acadimic Puplishers, Dordrecht, Boston, and London, 1996.